Bachelor of Science in Nuclear Engineering

+ Information by E-mail

Bachelor of Science in Nuclear Engineering

  • Objectives The objectives of the Bachelor of Science program are to provide each student with fundamental knowledge of nuclear engineering and related technologies, analytical and problem solving ability, ability for technical communications, professional ethics, leadership and interpersonal skills, capability to conduct research, and the ability to recognize the value of and pursue life-long learning.
  • Course description Nuclear Engineering is committed to a strong engineering program administered by highly motivated and active nuclear engineering faculty; it is the only B.S. Nuclear Engineering Degree program accredited in the state of Missouri. Nuclear Engineering at Missouri S&T, one of the earliest accredited undergraduate programs in the nation, interacts with professional societies, and the nuclear industry to promote continuing education, research opportunities, and public dissemination of information about issues and advances in the field.

    Nuclear engineers develop and promote the utilization of energy released from nuclear fission, fusion, and the decay of radioisotopes. Nuclear engineers work in the areas of nuclear reactor design, plant licensing, plant operations, fuel management and development, radioactive waste disposal, health physics, instrumentation and control, fusion research, space nuclear power, weaponry systems, and applications of radioisotopes in industry, biotechnology, medicine and research.

    If you choose nuclear engineering, you could work in the areas of nuclear reactor design, plant licensing, plant operation, fuel management and development, radioactive waste disposal, health physics, instrumentation and control, fusion research, space nuclear power, and applications of radioisotopes in industry, medicine, and research. As a nuclear engineer, you might be employed by utilities, reactor vendors, architect-engineering firms, consulting firms, industrial research centers, national laboratories, government agencies or universities.

    The nuclear engineering curriculum consists of three components: general education, mathematics and basic sciences, and engineering topics. The students apply the principles of physics, chemistry and mathematics to the study of engineering topics which include statics, mechanics of materials, electronic circuits and machines, thermodynamics, and metallurgy. The knowledge gained in these areas is applied to the understanding of nuclear engineering topics including reactor fluid mechanics and heat transfer, reactor physics, nuclear radiation measurements, radioactive waste management, reactor laboratory and operation, nuclear materials, and nuclear systems design (a capstone design course).

+ Information by E-mail

Other programs related to nuclear energy